Fashion Mnist Model 2
"""
Convolutional Neural Network: https://github.com/umbertogriffo/Fashion-mnist-cnn-keras/blob/
master/src/convolutional/fashion_mnist_cnn.py
"""
return_model = Sequential()
return_model.add(Conv2D(32, (5, 5), input_shape=self.input_shape, padding='same', activation='relu'))
return_model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
return_model.add(Conv2D(64, (5, 5), padding='same', activation='relu'))
return_model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
return_model.add(Conv2D(128, (1, 1), padding='same', activation='relu'))
return_model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
return_model.add(Flatten())
return_model.add(Dense(1024, activation='relu', kernel_constraint=maxnorm(3)))
return_model.add(Dropout(0.5))
return_model.add(Dense(512, activation='relu', kernel_constraint=maxnorm(3)))
return_model.add(Dropout(0.5))
return_model.add(Dense(self.num_classes, activation='softmax'))
# Compile model
lrate = 0.1
decay = lrate / self.epoch
sgd = keras.optimizers.SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=True)
return_model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])